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There’s a difference between knowing the path and walking the path.

The Matrix (1999)

The Oracle

Introduction

In the Fifth Episode of the Second Season of the LPR Cup, you will be asked to explore diverse
optical systems using 2 × 2 matrices. A video explaining how to work with such matrices is
available at link. If you have any questions on how to work with matrices correctly, you can ask
Abay.

Important! You can ask questions only on how to work with matrices. Questions related to
the task should be asked in the private messages of the LPR Cup.

General theory

Let us call an optical system centered if the centers of curvature of all spherical refractive and
reflecting surfaces are located on a single straight line, which is called the main optical axis. If
all the beams propagating in the system are at small distances from the optical axis and form
small angles with the axis, let us say that the paraxial approximation is accurate.

Note. In this problem, unless otherwise specified, let us assume that the paraxial approximation
is accurate, and all optical systems are centered.

Let us introduce a Cartesian coordinate system: the Oz axis, which coincides with the main
optical axis; Ox and Oy axes, which are perpendicular to the main optical axis, with Oy axis
lying in the drawing plane. Consider a beam of rays propagating in the drawing plane. At any
point with a known coordinate z, a ray can be uniquely determined if its distance to the optical
axis and the angle θ that this ray forms with this axis are known. For example, the figure shows
a ray that passes through a point at a distance y1 from the optical axis and forms an angle
θ1 with this axis (see fig.). Let us measure the angle θ in radians and consider it positive if
it corresponds to a counterclockwise rotation from the positive direction of the z axis to the
direction in which the light propagates along the ray.
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Although the distance y and the angle θ are obvious parameters for setting the position and
direction of the ray propagation, two other parameters are more often used in the literature:
the distance y and optical directional cosine v = n · θ, where n is the refractive index of the
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medium at a given point. In the future, let us characterize the ray with this pair of numbers
and say that it is unambiguously characterized by the following vector(

y
nθ

)
≡
(
y
v

)
.

When light propagates in an optical system, three processes can occur with a beam: propagation
process, refraction of light at the interface of two media, and reflection of light. For each process,
let us match ABCD with a matrix by which we will multiply the vector that defines the ray in
the plane z = const, as a result, we will get a new vector that corresponds to the new location
of the ray. As an example, consider the process of ray propagation in a homogeneous medium.

Matrix of propagation T

The figure above shows the process of ray propagation in a homogeneous medium with a
refractive index of n. Consider two planes with coordinates z1 and z2. It is clear that the
angle between the ray and the main optical axis in both planes is the same, so

θ2 = θ1 ⇐⇒ v2 = v1,

where v1 = nθ1 and v2 = nθ2.

On the other hand, the coordinate y2 can easily be written in terms of y1 and θ1. Indeed:

y2 = y1 + tg θ1(z2 − z1) ≈ y1 + θ1(z2 − z1) = y1 + v1
z2 − z1
n

.

From the last two equations, we can get that the equation of ray propagation in a homogeneous
medium can be written as (

y2
v2

)
=

1
z2 − z1
n

0 1

(y1
v1

)
.

And the ABCD matrix of propagation is

T =

1
z2 − z1
n

0 1


If the ray is involved in several processes in a row, some transformations should be done with
it. These transformations are equivalent to matrices multiplication. Indeed, if the ray was at
a distance y1 from the optical axis and propagated at a distance l1 along it, this is equivalent
to multiplying the vector with the components y1 and v1 by the corresponding matrix of
propagation T1 (

y2
v2

)
=

1
l1
n

0 1

(y1
v1

)
.

If the ray continued to propagate in a homogeneous medium for an additional distance l2, then
this is equivalent to multiplying the vector with the components y2 and v2 by the matrix T2(

y3
v3

)
=

1
l2
n

0 1

(y2
v2

)
=

1
l2
n

0 1

1
l1
n

0 1

(y1
v1

)
= T2 T1

(
y1
v1

)
= T

(
y1
v1

)
.
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Thus, we can say the final transformation matrix T is equal to the product of two propagation
matrices written in the reverse order. There we used the fact that the products of matrices
are associative. So, the following statement is true:

ABC = (AB)C = A(BC)

As an exercise, make sure that the matrix T has the form1
l1 + l2
n

0 1

 .

Note that in this case the relation T1×T2 = T2×T1 is true. In other words, the matrices commute,
which is not always true, including the examples that we will discuss later. Therefore, the order
of writing the matrices is very significant! And in our case, the matrices are written in the
reverse order!

Matrix of refraction P

Consider a spherical interface between two media with refractive indexes n1 and n2. Let the
radius of curvature of the surface be positive if the angle between the axis Oz and the radius-
vector which connects the center of curvature and the spherical surface is obtuse. If this angle
is acute, then let this radius of curvature be negative (see fig.).

z

R > 0

n1 n2

z

R < 0

n1 n2

Let us consider the refraction of light on a spherical surface and find the matrix of refraction
P . Let the ray pass from a medium with a refractive index n1 to a medium with a refractive
index n2 (see fig.).

n1 n2

R

α1 α2

θ2θ1 ϕ

y

It is clear that the y coordinate does not change when the ray crosses the interface between the
two media, so

y2 = y1.
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Let the angles of incidence and refraction be α1 and α2, respectively, and the angles between the
optical axis and the incident and refracted rays – θ1 and θ2. The figure shows that α1 = θ1+ϕ,
and α2 = θ2+ϕ, where ϕ is the angle between the optical axis and the radius to the point where
the ray is refracted. Let us write the Snell’s law n1α1 = n2α2 and use the fact that ϕ = y/R,
then

n1

(
θ1 +

y

R

)
= n2

(
θ2 +

y

R

)
.

Rewriting the last equation in terms of the directional cosine v1 and v2, we get that

v2 =
n1 − n2

R
y1 + v1,

and then we find (
y2
v2

)
=

 1 0

−n2 − n1

R
1

(y1
v1

)
.

In the lower-left corner of the matrix, let us take out a sign and select a fraction, which is called
the optical power of the surface P1

P1 =
n2 − n1

R
.

Thus, we get that the matrix of refraction has the form

P =

(
1 0

−P1 1

)
.

Exercise 1. Show that a thin biconvex lens with radii of curvature R1 > 0 and R2 < 0 and a
refractive index n, placed in a medium with a refractive index n0, has the following matrix of
transformation of optical rays (

1 0

−(P1 + P2) 1

)
,

where P1 + P2 = (n− n0)

(
1

R1

− 1

R2

)
=

1

F
.

Exercise 2. Find the optical power of a thin biconvex lens with radii of curvature R1 > 0 and
R2 < 0 and a refractive index n, if it is placed between two media with refractive indexes n1

and n2.

Exercise 3. Prove that the optical powers of two lenses which are close to each other add up.
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Matrix of reflection R

Find the reflection matrix for a spherical mirror. A beam running parallel to the axis of a mirror
(see fig.) is given by the vector (

y
0

)
.

−r

C

θ2

After reflection, it passes through the focus of the spherical mirror located at a distance r/2
from its vertex. Immediately after reflection, the beam height does not change, and the slope
angle of the beam is

α = − y

−r/2
.

Here we took into account that the angle and curvature radius are negative, so the reflected
beam is characterized by the vector  y

2

r
y

 .

The incident and reflected rays are connected by the reflection matrix R y

2

r
y

 = R

(
y
0

)
=

(
A B
C D

)(
y
0

)
=

(
Ay
Cy

)
.

It follows from the equality of the vectors coordinates that

A = 1; C =
2

r
.

Now let’s reverse the direction of the ray just discussed. Then the ray before reflection is given
by the vector  y

−2

r
y

 .

After reflection, it is given by the vector (
y
0

)
.

The incident and reflected rays are still connected by the reflection matrix R

(
y
0

)
= R

 y

−2

r
y

 =

(
A B
C D

) y

−2

r
y

 =

Ay −B
2

r
y

Cy −D2

r
y

 .
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Equating the coordinates of the vectors, we get

B = 0; C −D2

r
= 0.

From which (taking into account the expression for C) we find

D = 1.

All elements of the reflection matrix are found

R =

1 0

2

r
1

 .

Note. When considering reflections, one of the additional assumptions is usually made:

• The positive direction of the z axis is taken along the beam path.

• When the direction of the beam is changed, the direction of the z axis remains the same,
while the refractive index of the medium changes by −n.

Problem

Part 1

Let there be some optical system, which is described by some ABCD-matrix that transforms a
ray outgoing from the plane with coordinate z1 into a ray entering the plane z2. The parameters
of the optical system were selected so that one of the matrix elements became equal to zero.
What physical property does the system have if

1. A = 0;

2. B = 0;

3. C = 0;

4. D = 0.

Note. Each of the points weighs zero points, but you can send them, and they will be checked
in the CPI format so you can make the right conclusions from your reasoning.

Part 2

5. (0,5 points) The eyepiece of the Hedgehog telescope consists of two thin positive lenses
with optical powers P1 and P2 made of the same material and located at some distance
from each other. At what distance between lenses a dependence of the refractive index
of glass on wavelengths will not affect the optical power of the eyepiece? Consider
the wavelength being placed in a small spectral interval in the surrounding area of a
wavelength λ0.
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Part 3

6. (0,5 points) Both ends of a glass cylindrical rod 2,8 cm long have a spherical shape with
a radius of 2,4 cm. Refractive index of the glass is 1,6. An object in the form of a straight
line 0,5 cm long is placed on the axis of the rod in a vacuum at a distance of 8,0 cm from
the left end of the rod. Find the position and size of the image.

n

8,0 cm
2,8 cm

Part 4
y

z

Consider a plate with a refractive index which depends
only on the distance to the optical axis according to
the law

n(y) = n0 − n1
y2

2

The width of the plate is L, and the thickness is a.
Consider the constants n0 and n1 known, it is also
known that n1a

2 � n0.

7. (1 point) Find ABCD-matrix of the plate.

Part 5

It is known that for certain parameters of the lens system, objects
located on the periphery of the space between the lenses become
invisible, and the images of objects outside the optical system are
not distorted, as if there were no optical system (see fig.).

Note. In all items of this problem there is no need to prove the
existance of the invisibility area.

8. (1 point) Show that symmetrical system of three thin lenses with focal lengths distances
f1, f2, and f1, respectively (see fig. below) satisfies the above-described condition only if
f1 � t, where t is a distance between lenses.

z

t t

f1 f1
f2
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9. (3 points) Find the ratio between f1 and f2 focal lengths for a system of four thin lenses
with focal lengths f1, f2, f2, and f1 respectively (see fig. below), at which this phenomenon
will be observed. Determine at what ratio f1/f2 the length of the optical system reaches
the extremum. What is the ratio t2/f2? Consider the distance between the first and second
lenses being equal to the distance between the third and fourth lenses.

z

t1 t1t2

f1 f1
f2 f2

Note. In all the tasks, the distance between lenses and their focal lengths are unknown. The
chromatic aberration can be neglected.

Part 6

The figure shows a resonator consisting of 2 spherical mirrors with radii R1 and R2 at a distance
L from each other, and some optical element with a matrix(

a b
c d

)
.

R1 R2

Moreover, it is known that

det
(
a b
c d

)
≡
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc = 1.

System stability

10. (1 point) Find the ray transmission matrix for one «cycle» of the ray in the resonator.

Let us denote the matrix obtained in task 1 by(
A B
C D

)
.
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11. (2 points) Find the equations on A, B, C, and D corresponding to the trajectory lines
of the ray that does not leave the resonator through a large number of reflections. The
answer should be expressed in terms of A, B, C, D. Note. Correct can also be obtained
with the wrong task 10.

Chaotic behavior of light

At this point consider 
R1 = −1 m;

R2 = 2 m;

L = 1,001 m.

The optical element matrix is (
a b
c d

)
=

(
1 0
0 1

)
.

12. (1 point) For rays (
y1
0

)
,

(
y2
0

)
such that |y1−y2| � |y1|, find the rate of divergence. Determine the nature of dependence
(linear, exponential, polynomial, etc.).

Note. The rate of divergence is the function of the distance between the rays depending
on the number of resonator passes. Its dimension is meters per number of resonator flights.

Instruction. Perhaps somewhere in the problem, it will be convenient to find some solutions in
the following form

xk = xmax sin (kω + ϕ0) ;

xk = xmax sh (kω + ϕ0) .

Here k ∈ N, shx =
ex − e−x

2
is a hyperbolic sine.

First hint — 31.05.2021 14:00 (GMT-2)
Second hint — 02.06.2021 14:00 (GMT-2)

End of the fifth tour — 04.06.2021 22:00 (GMT+3)
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