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Hint 2
IMPORTANT! The next task is both a hint and an alternative to the main task. Three
important points:

1. You can continue to send the solution to the main problem.
2. At any moment before the final deadline you can start to solve the Alternative problem.

If you do so, at the beginning of the solution write: I am doing the Alternative problem!
In this case a penalty coefficient for the Alternative problem is

0,7 ·
∑
i

ki · pi
10

,

where pi is a point for the problem item, and ki is a penalty coefficient for the cor-
responding problem’s item at the moment of moving to the Alternative problem. In
other words, maximal points for the alternative problem equals to the maximal points
you can gain at the moment of moving to the alternative one multiplied by 0,7. Also,
we remind you that a penalty coefficient can’t be less than 0,1. Solutions of the main
problems from that moment will not be checked. Be careful!

3. The task consists of several items. The penalty multiplier earned before is applied to
all points. In the future, each item is evaluated as a separate task. If you send a solution
without any item, this item’s solution is considered as Incorrect. For more information
about scoring points for composite tasks, see the rules of the Cup.
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Alternative task

1 Kinematics of SRT
1.1. Two events occur in the laboratory frame of reference in the same place, but they are

separated in time by 3 seconds.
(a) (0.2 points) What is the distance in space between these events in the rocket’s

reference frame, if the time interval between events is 5 seconds in it?
(b) (0.2 points)What is the velocity vr of the rocket relative to the laboratory reference

frame?
1.2. (0.4 points) A spaceship moves at a constant speed V = (24/25)c toward the center

of the Earth. What distance, in the reference frame associated with the Earth, will
the spaceship travel during a time interval ∆t′ = 7 s as measured by the ship’s clock?
Neglect the rotation of the Earth and its orbital motion.

1.3. (0.6 points) A spaceship is flying at a speed of V = 0.6 c from one space beacon to
another. At the moment when it is exactly halfway between the beacons, each beacon
emits a light pulse toward the ship. Find the time interval, as measured on the ship,
between the moments when these pulses are detected. The distance between the beacons
is such that light takes 2 months to travel from one to the other.

1.4. (0.8 points) Two starships with their engines off are moving toward each other. On one
starship, signal lights flash simultaneously at the bow and stern every second. On the
approaching starship, every 0.5 seconds, two flashes are observed with a time interval
of τ ′ = 1 µs. Find the length l0 of the first starship and their relative approach speed v.

Newton’s second law in SRT has the form

F =
dp
dt

, где p = γmv.

1.5. (0.8 points) A particle with a mass of m begins to move under the influence of a constant
magnitude and direction of force F . Determine after what time, according to its own
clock, the particle will reach a velocity of v = 0.8c. The following integral may be useful
to you:

x1∫
x0

dx

1− x2
=

1

2
ln

1 + x1

1− x1

1− x0

1 + x0

.

2 Classical black hole
During prolonged observation of the position of a star near the center of the galaxy, it was
found that the star undergoes periodic motion along a circular path in the gravitational field
of a certain massive object. It is known that the distance from the observation point to the
center of the galaxy is ≈ 26 · 103 light-years, the period of the star’s orbit is ≈ 16 years, the
radius of the star’s circular trajectory as seen from the observation point is visible at an angle
of 88 ·10−3 arcseconds, and the plane in which the star moves is perpendicular to the direction
of observation.
2.1. (1 point) Determine the mass of the object attracting the star.
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2.2. (1 point) Assuming the object attracting the star is spherically symmetric and its size
is sufficiently small, determine the boundaries of the region around such an object from
which no signal can reach a distant observer.

3 GRT
Light rays in the Schwarzschild metric
Let’s consider how light moves in the Schwarzschild metric.

ds2 =
(
1− rg

r

)
dt2 − dr2

1− rg
r

− r2dφ2. (1)

Far from gravitating bodies, light propagates in a straight line. The distance from this line (in
(x, y, z) space) to the origin is called the impact parameter ρ. Since the mass of the photon is
zero, far from gravitating bodies its energy is E = |p|, and its angular momentum is J = |p|ρ.
Recall that the curve along which light moves is a null (lightlike) geodesic, i.e., at each of its
points

ds2 =
(
1− rg

r

)
dt2 − dr2

1− rg
r

− r2dφ2 = 0. (2)

Due to the fact that this equation is fulfilled, a light-like geodesic depends only on a single
parameter ρ instead of the two parameters E and J . To obtain t(r, ρ) and φ(r, ρ), we need one
more equation. Let us take, as such an equation, the ratio of the conservation laws obtained
in the main problem:

ρ =
J

E
=

(
1− rg

r

)−1

r2
dφ

dt
= const . (3)

It is clear that for r ≫ rg this reduces to rvφ, which coincides with the distance described
above:

OA = r cosα = r
vφ
|v⃗|

= r
vφ
c

= rvφ.

O

A

B

r⃗

v⃗

vr

vφα

α

Shapiro delay
One of the consequences of light propagating in the metric 1 is that its propagation speed
decreases, and therefore the travel time increases. This effect was predicted by Irwin Shapiro
in 1964 and was later experimentally confirmed in 1966–1967. In this section, you are invited
to reproduce Shapiro’s calculation.
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Let us consider a light ray emitted from Earth and reaching Venus. For simplicity, we will
assume that the trajectory of the ray is a straight line1, i.e., that equation (3) has the form

ρ = r
vφ
|v⃗|

= r
rdφ/dt√

(dr/dt)2 + r2(dφ/dt)2
= r

rdφ√
dr2 + r2dφ2

= r sinα = const .

To maximize the effect, consider the trajectory that touches the Sun (see the picture below).

Sun

2rС

rВ rЗ
Venus Earthα

Let the distance from the Sun to Earth be rE, and to Venus be rV in this planetary configu-
ration. The radius of the Sun is rS.
3.1. (0.5 points) Express dt for such a trajectory in terms of dr, r, rS, and the Schwarzschild

radius rg.
3.2. (0.5 points) Decompose the resulting expression for dt to the first order of smallness in

rg/r.

3.3. (0.5 points) Using the decomposition obtained in the previous paragraph, find the time
tgr it takes for the ray to reach Venus. The following integrals may be useful to you:

x1∫
x0

dx√
x2 − a2

= ln
x1 +

√
x2
1 − a2

x0 +
√

x2
0 − a2

,

x1∫
x0

dx

x2
√
x2 − a2

=

√
x2
1 − a2

a2x1

−
√

x2
0 − a2

a2x0

.

3.4. (0.5 points) Let us denote the Newtonian gravity prediction for the time required for the
ray to reach Venus as tN. Assuming rS = 7× 105 km, rE = 1.5× 108 km, rV = 1.1× 108

km, and the Schwarzschild radius for the Sun is rg = 3 km, calculate tgr − tN.

Deflection of light rays by a black hole
From equations (2) and (3), it is possible to obtain the equations for the light-like geodesic
t(r, ρ) and φ(r, ρ):

t(r, ρ)− t0 = ±
r∫

r0

dr

ρ
(
1− rg

r

)√
fL(r, ρ)

, φ(r, ρ)− φ0 = ±
r∫

r0

dr

r2
√
fL(r, ρ)

, (4)

1Using the equations obtained in the next section, one can verify that this approximation is valid.
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3.5. (0.5 points) Find fL(r, ρ).
3.6. (0.5 points) Draw a qualitative graph of the dependence U(ρ, r−1) = ρ−2 − fL(r, ρ)

from r−1 in the domain r−1 ∈ [0,r−1
g ] for some fixed ρ. The graph should show all the

minimum and maximum points of the function U(ρ, r−1).
The region of allowed r is limited by the requirement that the the root expressions in (4) are
non-negative. This means, in particular, that U(ρ, r−1) ⩽ ρ−2. From the graph constructed
in item 3.6, it is clear that for different values of the parameter ρ, there are several types of
light-like geodesics:

• For ρ < ρmin, the light ray falls into the black hole.
• For ρ > ρmin, there are two types of geodesics. One corresponds to a light ray coming

from infinity, approaching the black hole to some minimum distance rmin(ρ), and then
escaping back to infinity.

3.7. (0.5 points) Finf ρmin/rg accurate to 0,01.
3.8. (0.5 points) Find the minimum (among all rmin(ρ)) distance rmin to which a light-like

geodesic can approach the black hole without falling in, accurate to 0.01rg.
In 2019, members of the Event Horizon Telescope collaboration published the image of the
shadow of the supermassive black hole at the center of the galaxy M87:

Let us assume that the diameter of the bright ring in these images is equal to 2ρmin. The
diameter of the ring can conveniently be calculated as

d =
dout + din

2
,

where dout and din are the inner and outer radii of the ring, respectively. Assume that the
distance to the black hole is 16,4 million parsecs.
3.9. (0.5 points) Using the image above, find dout. Express your answer in kilometers.

3.10. (0.5 points) Using the image above, find din. Express your answer in kilometers.
3.11. (0 points) Using the results obtained and the expression for ρmin (see 3.7), find rg for

the supermassive black hole at the center of the galaxy M87. Express your answer in
kilometers.

3.12. (0 points) Using the result from the previous item, find the mass of this black hole.
Express your answer in solar masses.
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